
Application Manager



Index
Overview 3

Installation 3

How to access scripts 3

Edit Application Manager Settings 3
Application Manager settings window 4

Create new Environment Settings 6

Environment Settings 7
ID 7
Version 7
Name 7
Custom Settings List 8
Execution Order Lists 9

Custom settings 10
Access Custom Settings inside your code 10
Tags 10

ApplicationStartup 11
BuildPreExport 12
BuildPostExport 13

Custom settings examples 14
AdsSettings (ApplicationStartup) 14
AndroidManifestSettings (BuildPreExport) 14
ARSettings (ApplicationStartup) 14
AssetDatabaseSettings (BuildPreExport) 14
CloudBuildSettings (BuildPostExport) 14
FacebookSettings (ApplicationStartup, BuildPreExport) 14
FirebaseSettings (ApplicationStartup, BuildPreExport) 15
GDPRSettings (ApplicationStartup) 15
IconsSettings (BuildPreExport) 15
LoggingSettings (BuildPreExport) 15
PrefabSpawnerSettings (ApplicationStartup) 15
ScriptingDefineSymbolsSettings (BuildPreExport) 16
XcodeSettings (BuildPostExport) 16

Application Starting Manager 17
Initialization 17
On Initialize Events 17

Support 18



Overview
Application Manager is a Unity Editor tool that easily manages different configurations for
different deployment environments.

It makes it possible to change a lot of information between builds without editing manually
the Project Settings, helping you avoid mistakes or forgetfulness.

It can also be used to execute code on startup sequentially, with the possibility to pause
and resume the execution.

It is a very useful tool in combination with Unity Cloud Build with its Pre- and post-export
methods.

Installation
It is available on Unity Asset Store:

● Pro version
● Lite version

It doesn’t require particular installations or configurations, to work it just has to be present in
the Asset folder.

How to access scripts
All Application Manager scripts are placed under the namespace
“DragonkinStudios.ApplicationManagement”, so if you want to access them you have to
add a using directive.

Edit Application Manager Settings
To start editing the settings go to “Tools/Application Manager/Edit Settings”.
It will open the ApplicationManager settings contained in the Resources folder, if already
present, otherwise it creates new settings.

https://unity3d.com/unity/features/cloud-build
https://assetstore.unity.com/
https://assetstore.unity.com/packages/slug/176329
https://assetstore.unity.com/packages/slug/207099
https://docs.unity3d.com/Manual/Namespaces.html


Application Manager settings window
Here you can manage all your environments adding, removing or editing each
configuration.

Note: Pro version is required to add more than 2 environments.



You can set the current environment in the editor by just clicking on “Set as current” button
in the list of all the environments.

When you set an environment as current the Application Manager will copy all the
information within it and set them in the Player Settings.

You can also change it via scripts using the property
“ApplicationManager.CurrentEnvironment;” or calling
“ApplicationManager.SetCurrentEnvironment(“environmentID”);” and passing as
parameter the ID of the environment you want to set.

The Application Manager overrides by default the Unity build process executed with the
"Build" and "Build and Run" buttons in the "Build Settings" window in order to invoke the
BuildPreExport and BuildPostExport methods of Current Environment.

If you want you can disable this behaviour and invoke them manually from your editor scripts
calling “ApplicationManager.SetCurrentEnvironmentPreExportValues();” and
“ApplicationManager.SetCurrentEnvironmentPostExportValues(“pathToBuiltProject”);
”.



Create new Environment Settings
To create new Environment Settings go to “Assets/Create/Application
Manager/Environment Settings”.
Alternatively, you can right-click within the Project window and go to “Create/Application
Manager/Environment Settings”.

Note: It is recommended to store settings files outside the Resources folder to avoid
sensitive or useless data in builds.



Environment Settings
An Environment Settings is a Scriptable Object containing the basic information of the
app and a list of custom settings useful to manage information that may vary between the
different environments.

ID
Environment ID: the string that identifies the environment. It is used to set the current

environment, so it must be unique and different from any other environment ID.

Version
Version: the string containing the version of the app.

Android Bundle Version Code: the bundle version code of the Android app.

IOS Build Number: the build number of the bundle of the iOS app.

Standalone Build Number: the build number of the bundle of the Mac App Store app.

Name
Company Name: the name of your company.

Product Name: the name of your game.



Android Package name: the application ID which identifies your Android app on the device

and in the Google Play Store

IOS Bundle Identifier: the Bundle Identifier which identifies your iOS app on the device and

in the App Store.

Standalone Bundle Identifier: the Bundle Identifier which identifies your Mac app on the

device and in the Mac App Store.

Custom Settings List
The Custom Settings List contains a collection of settings, identified by a tag.

Note: Pro version is required to add more than 2 settings.

Note: You can insert only one settings file of the same type.



Execution Order Lists

The Execution Order Lists are used to order the execution of the methods of the custom
settings each divided by tag.

Every time you insert or remove elements from the Custom Settings List, all these lists are
automatically updated.

Settings with multiple tags will appear in multiple lists and have to be ordered individually for
each tag.



Custom settings
Custom settings are Scriptable Objects containing additional information for your
environment settings, for example GDPR settings, Cloud Build settings, all the other built-in
examples, or the settings you decide to create.

There are no limits. Create and use all the settings you need to customize your projects and
builds. You just have to implement the right Tag interface in your Scriptable Objects.

Access Custom Settings inside your code

In order to access a Custom Settings of type T from any Environment Settings call
“GetCustomSettings<T>();”.

Instead, if you want to retrieve the element of type T from the current environment you can
use “ApplicationManager.CurrentEnvironment.GetCustomSettings<T>();”.

Tags

The custom settings can have one or more tags. Under the hood tags are merely interfaces
that a custom settings class implements containing definitions for a group of related
functionalities.

In this package, there are three different tags: ApplicationStartup, BuildPreExport and
BuildPreExport.

Each tag ensures a different behavior for the settings.

Note: Tags are not required for custom settings, so for example, settings that are only data
containers may not have any tag.



ApplicationStartup

This tag is assigned when the Scriptable Object implements the IApplicationStartup
interface with the declared method “ExecuteStartupAction(System.Action callback);”.

All these methods are invoked at the app startup by the Application Starting Manager only
if their own custom settings are present on Custom Settings List.

It may be used to check permissions, GDPR acceptance, initialize SDKs and other
managers.

The “callback” parameter of the method must be invoked when the action is ended and the
Application Starting Manager can invoke the next settings method.

In the example below, the “callback” is invoked if the user has already accepted the GDPR
policies or when the “accept” button in the instanced UI canvas is clicked.



BuildPreExport

This tag is assigned when the Scriptable Object implements the IPreExportSettings
interface with the declared method “SetPreExportValues();”.

It is an Editor only method, so you should implement it inside a “#if UNITY_EDITOR” block
or in a script located under an Editor folder.

All these methods are invoked by Application Manager every time the current environment is
changed and before any build process is started but only if their own custom settings are
present on Custom Settings List.

It may be used to edit Project Settings or any other settings values, delete or override Assets
files and modify everything you want in the project before the build process is started.

In the example below, it is used to change the icons of the application.

Note: The Application Manager overrides the default build process executed with the "Build"
and "Build and Run" buttons in the "Build Settings" window in order to invoke all the
PreExport methods before any build process.



BuildPostExport

It implements the IPostExportSettings interface with the declared method
“SetPostExportValues(string pathToBuiltProject);”.

It is an Editor only method, so you should implement it inside a “#if UNITY_EDITOR” block
or in a script located under an Editor folder.

All these methods are invoked by Application Manager after any build process is ended but
only if their own custom settings are present on Custom Settings List.

It may be used to manipulate the project files after the project is built.

In the example below, it is used to edit the Xcode Settings after an iOS build.



Custom settings examples

Built-in examples
A collection of built-in examples of the custom settings is provided with the package.

IconsSettings (BuildPreExport)

It allows you to set the icons of the app.

You can set the icons for Android (legacy, round and adaptive), iOS and Standalone
platforms.

LoggingSettings (BuildPreExport)

It allows you to edit the base logging settings of the app.

You can choose if enable logs and which type of message should be logged.

PrefabSpawnerSettings (ApplicationStartup)

It allows you to spawn prefabs at app startup.

You can use it to spawn other managers or game elements.

Pro version built-in examples
A collection of built-in examples of the custom settings is provided with the Pro version
package.

AdsSettings (ApplicationStartup)

It allows you to check if users have already given consent to show personalized ads,
otherwise it shows a UI canvas to allow them to choose it.1

Note: It is not related to any Ads SDK, so you need to replace some lines with the API of the
chosen SDK.

AndroidManifestSettings (BuildPreExport)
It allows you to edit the AndroidManifest.xml file inside the Assets folder before an Android
build.

You can replace or remove some strings and add new XML elements.

1 You have to provide your own canvas prefab in the settings attached with script
AdsConsentCanvas.cs.



ARSettings (ApplicationStartup)
It shows at startup a UI canvas with the safety warning for Augmented Reality2

applications.

AssetDatabaseSettings (BuildPreExport)
It allows you to clone files and directories inside the Assets folder and overwrite the
destination.

CloudBuildSettings (BuildPostExport)
It allows you to easily interface your app with the Unity Cloud Build service.

You can use pre- and post-export methods of Unity Cloud Build to automatically change
the environment of the build.

You can also add files necessary only to the Cloud Build process, such as specific plugins or
libraries.

FacebookSettings (ApplicationStartup, BuildPreExport)
It allows you to initialize the Facebook SDK at startup.

You can use it also to edit the App Index in the Facebook settings. In this way you can use
different Facebook apps inside your Unity project.

Note: You need to replace some lines with the API of Facebook SDK for the initialization and
the settings changes.

FirebaseSettings (ApplicationStartup, BuildPreExport)
It allows you to initialize the Firebase SDK at startup.

You can use it also to replace the Google Service Files in the Assets folder with the correct
one. In this way you can use different Firebase projects inside your Unity project.

Note: You need to replace some lines with the API of the Firebase SDK for the initialization.

GDPRSettings (ApplicationStartup)

It allows you to check if users have already accepted the GDPR policies, otherwise it shows
a UI canvas with policies URLs and “accept” button.3

URLs are compatible with multilanguage.
You can set URLs for Terms and Conditions, Privacy Policy and Cookie Policy.

3You have to provide your own canvas prefab in the settings attached with script “GDPRCanvas”.

2 You have to provide your own canvas prefab in the settings attached with script
ApplicationStartingCanvas.cs.

https://unity3d.com/unity/features/cloud-build
https://developers.facebook.com/docs/unity/
https://firebase.google.com/docs/unity/setup


It contains a GDPR version data that must be updated when your policies are subjected to
some changes. In this way the UI canvas for the acceptance will be shown again.

ScriptingDefineSymbolsSettings (BuildPreExport)

It allows you to enter the names of the symbols you want to define for Android, iOS and
Standalone platforms, separated by semicolons.

You can use these symbols as the conditions for #if directives, just like the built-in ones.

XcodeSettings (BuildPostExport)

It allows you to edit the Xcode project values after an iOS build.

You can edit the project languages, enable the push notifications, enable capabilities
and remove strings from the Info.plist file.



Application Starting Manager
Application Starting Manager is a MonoBehaviour class used to invoke the
“ExecuteStartupAction(System.Action callback);” methods of all the Application Startup
settings in the current environment.

The methods are called sequentially following the order specified in the Execution Order
Lists.

Initialization

It has to be placed in a Game Object of the first scene loaded at startup to work properly.

It can initialize itself automatically on Start() if the “Initialize On Start” is selected, otherwise
you can manually initialize it calling the “Initialize();” method.
The manual initialization can be useful if you want to execute it after a custom splash screen
or other.

On Initialize Events

You can add some “On Initialize Events” that will be invoked when all startup methods are
called and the initialization is ended.



It can be done in the editor using Unity Events or in scripts using the System.Action
delegate.

Using them, after the initialization of your settings, you can load a new scene (for example
the Main Menu) or you can start your app components and menus.

Support
If you have any questions, issues, requests or suggestions, please do not hesitate to email
us at info@dragonkinstudios.com

mailto:info@dragonkinstudios.com

